背景
高粱在發(fā)展中國家作為食糧作物, 在田間種植過程中需要噴撒農(nóng)藥以減少病蟲害對于產(chǎn)量和品質(zhì)的影響。當(dāng)出現(xiàn)嚴(yán)重的病蟲害時, 農(nóng)戶們會多次噴灑高濃度的農(nóng)藥溶液, 這導(dǎo)致高粱中存在過量的農(nóng)藥殘留。研究表明, 長期食用農(nóng)藥殘留超標(biāo)的食物對人體危害巨大, 會造成癌癥、心臟病、神經(jīng)性疾病等嚴(yán)重后果。因此, 如何無損、快速、準(zhǔn)確檢測高粱中的農(nóng)藥殘留是亟待解決的問題。
高光譜技術(shù)相比于傳統(tǒng)的光譜技術(shù), 可以同時獲得檢測樣品的圖像信息和光譜信息, 可以實現(xiàn)對農(nóng)藥殘留的準(zhǔn)確檢測。本研究建立了基于BP神經(jīng)網(wǎng)絡(luò)自適應(yīng)增強算法的集成學(xué)習(xí)高粱農(nóng)藥殘留分類模型, 相比于單一分類模型, BP-AdaBoost結(jié)合BP神經(jīng)網(wǎng)絡(luò)和AdaBoost算法的優(yōu)勢, 可以適應(yīng)不同的數(shù)據(jù)和問題, 提高模型分類正確率、減少模型過擬合風(fēng)險。本研究結(jié)合高光譜技術(shù)與機器學(xué)習(xí)算法快速檢測高粱中殘留的農(nóng)藥種類, 可以幫助農(nóng)產(chǎn)品生產(chǎn)者和食品加工廠快速識別高粱中的農(nóng)藥殘留種類。
實驗設(shè)計
本研究所使用的高粱品種為紅纓子, 是貴州某高粱育種中心常見的品種。農(nóng)藥選擇高粱種植過程中常用的農(nóng)藥種類, 分別為苯醚甲環(huán)唑、馬拉硫磷、氯蟲苯甲酰胺、莠去津, 分別表示為B、M、L、Y, 購買于四川宜賓某農(nóng)藥市場。4種農(nóng)藥分別用蒸餾水稀釋400、700、700、200倍, 配制實驗所需的農(nóng)藥溶液。用4個噴壺農(nóng)藥溶液均勻噴灑在4組高粱樣品上, 并設(shè)置一組噴灑清水(Q)樣品的對照組。每組樣品包含2880顆高粱籽粒, 共計14400顆。將高粱樣品放置于室內(nèi)通風(fēng)處, 自然干燥12 h后利用GaiaField-N17E-HR高光譜成像系統(tǒng)(江蘇雙利合譜公司)采集高粱樣品的高光譜圖像。
圖1高光譜成像系統(tǒng)
采用分水嶺算法分割高粱樣品籽粒,將每顆高粱籽粒所在區(qū)域作為感興趣區(qū)域提取光譜信息。使用孤立森林算法剔除光譜中的異常值,利用SNV、SG和DWT對光譜數(shù)據(jù)進行預(yù)處理,通過CARS、PCA、CatBoost和GBDT篩選特征波長,建立了XGBoost、LGBM、SVM和 BP-Adaboost農(nóng)藥殘留分類模型,實現(xiàn)了高粱農(nóng)藥殘留種類的快速無損檢測。
結(jié)論
為顯示不同種類農(nóng)藥殘留高粱樣品光譜曲線的差異, 計算每類高粱樣品的光譜曲線的平均值得到平均光譜曲線, 如圖2所示。由圖2中可以看出, 在近紅外波段范圍內(nèi), 光譜曲線出現(xiàn)3處較為明顯的吸收峰, 分別位于925 nm、1230 nm、1470 nm左右。925 nm位置處的吸收峰與O-H的第一拉伸泛頻有關(guān), 1230 nm位置處的吸收峰與C-H的第二拉伸泛頻有關(guān), 1470 nm位置處的吸收峰與N-H的第一拉伸泛頻有關(guān)。在近紅外波段范圍內(nèi), 各類農(nóng)藥殘留高粱樣品的光譜反射率不同, 但總體變化趨勢相似。無農(nóng)藥殘留高粱樣品的反射率最低, 與不同類型農(nóng)藥殘留樣品的光譜曲線差異最明顯。此外, B與Y的平均光譜反射率非常接近, L的平均光譜反射率最高。在1000~1100 nm范圍內(nèi), 各類高粱樣品的反射率差距最大, 由高到低分別是L、M、Y、B、Q。這些平均光譜的差異為鑒別高粱樣品農(nóng)藥殘留種類提供了依據(jù)。
圖2 高粱農(nóng)藥殘留樣品平均光譜曲線
高粱農(nóng)藥殘留樣品的光譜曲線在900 nm和1700 nm處出現(xiàn)了異常波動, 這說明這兩個位置處的光譜數(shù)據(jù)受到的干擾較大, 數(shù)據(jù)存在嚴(yán)重失真的情況。為消除數(shù)據(jù)失真對后期建模分類效果的影響, 本研究截去了光譜數(shù)據(jù)開始處前15個和末尾處后41個波段信息, 保留456個波段用于建模分析。利用SG、DWT、SNV預(yù)處理方法對高粱農(nóng)藥殘留樣品的光譜數(shù)據(jù)進行預(yù)處理。建立預(yù)處理光譜數(shù)據(jù)的SVM農(nóng)藥殘留分類模型識別農(nóng)藥殘留種類, 識別結(jié)果如表1所示。結(jié)果顯示, 使用SNV預(yù)處理的光譜數(shù)據(jù)建立的分類模型識別效果好, 訓(xùn)練正確率和測試集正確率分別為85.94%和81.58%。這可能是SNV預(yù)處理可以同時減少噪聲和散射成分對光譜數(shù)據(jù)的影響。因此, 將SNV預(yù)處理后的光譜數(shù)據(jù)用于后續(xù)的研究分析中。原始光譜曲線如圖3(a)所示,SNV預(yù)處理之后的高粱農(nóng)藥殘留樣品光譜曲線如圖3(b)所示。
注: a: 原始光譜曲線; b: SNV預(yù)處理后的光譜曲線
圖3 高粱農(nóng)藥殘留樣品光譜曲線
表1 光譜數(shù)據(jù)預(yù)處理后的建模效果(%)
方法 |
訓(xùn)練集正確率 |
測試集正確率 |
原始光譜(未處理) |
82.67 |
81.11 |
SG |
82.77 |
81.43 |
DWT |
82.53 |
81.46 |
SNV |
85.94 |
81.58 |
本研究使用了CatBoost、GBDT、CARS、PCA特征選擇方法, CatBoost和GBDT通過設(shè)置特征重要性得分閾值(0.2)選擇特征波長, PCA通過設(shè)置載荷系數(shù)閾值(0.1)選擇特征波長, CARS選擇建立最小交叉驗證均方根誤差(root mean square error of cross validation, RMSECV)值PLS模型的波長為特征波長, 分別選擇了132、147、35、12個特征波長。圖4為特征波長的具體位置分布圖, 在圖4(a)和圖4(b)中, 綠色線條代表特征波長的具體位置, 紅色線條代表所選擇特征波長對應(yīng)的特征重要性得分, 特征波長大致分布在900、1100、1400、1650 nm范圍內(nèi)。其中, CatBoost提取的最大貢獻率波長分布在1600 nm左右, 特征重要性得分為10.23%, GBDT提取的最大貢獻率波長分布在1400 nm左右, 特征重要性得分為4.11%。在圖4(c)和圖4(d)中,紅色線條代表特征波長的具體位置。
表2 特征方法的建模結(jié)果(%)
模型 |
特征方法 |
訓(xùn)練集正確率 |
測試集正確率 |
SVM |
None |
85.94 |
81.58 |
CatBoost |
82.40 |
81.87 |
|
GBDT |
82.04 |
81.30 |
|
CARS |
77.34 |
76.47 |
|
|
PCA |
60.68 |
59.19 |
注: a: CatBoost; b: GBDT; c: CARS; d: PCA
圖4 特征波長分布位置
使用CatBoost算法選擇的特征波長為光譜數(shù)據(jù), 以實際農(nóng)藥殘留種類為標(biāo)簽, 建立光譜數(shù)據(jù)集, 并使用樣品集劃分方法將光譜數(shù)據(jù)集劃分為訓(xùn)練集和測試集, 建立了BP-Adaboost、XGBoost、LGBM、SVM模型, 實現(xiàn)高粱中不同類別的農(nóng)藥殘留的分類, 建模結(jié)果如表3所示。從整體分類結(jié)果可以看出, Q的分類正確率最高, 識別效果好, Y的分類正確率最低。最佳的農(nóng)藥殘留分類模型為BP-Adaboost, 測試集平均分類正確率為95.17%, B、L、M、Q、Y測試集分類正確率分別為99.80%、85.11%、94.76%、99.80%、96.24%, 錯誤識別農(nóng)藥殘留高粱籽粒顆數(shù)分別為1、74、24、1、19。相比于XGBoost、LGBM、SVM模型, BP-Adaboost模型平均正確率分別提升了12.66%、13.47%、13.3%。BP-Adaboost模型之所以取得如此良好的分類結(jié)果, 是因為它不僅利用弱分類器組合形成強分類器, 而且還利用BP神經(jīng)網(wǎng)絡(luò)來調(diào)整輸入值與輸出值之間的誤差。XGBoost與LGBM模型訓(xùn)練集分類正確率為100%, 但測試集分類正確率卻較低, 模型出現(xiàn)過擬合現(xiàn)象。本研究針對這個情況使用網(wǎng)格尋優(yōu)來調(diào)整模型的參數(shù), 但分類效果仍然沒有提升, 這可能是由于模型的復(fù)雜程度過高而導(dǎo)致的模型過擬合。此外, BP-Adaboost模型建模時間為124.79 s, 雖然相比于XGBoost等模型所需較長, 但與全波長建立的BP-Adaboost模型相比(建模時間為3325.34 s), 極大地降低了模型訓(xùn)練的時間。與相比姜榮昌等[13]的研究, 在保證單一農(nóng)藥殘留類別識別率高的基礎(chǔ)上, 同時又提升了模型平均分類正確率??傮w來說, CatBoost特征選擇方法結(jié)合BP-Adaboost模型可以準(zhǔn)確鑒別高粱農(nóng)藥殘留種類。
本研究利用IF算法剔除了高粱光譜數(shù)據(jù)集中的異常值, 減少了異常樣品對于建模結(jié)果的影響; 使用SNV預(yù)處理方法對光譜數(shù)據(jù)進行預(yù)處理, 減少了噪聲和散射成分對于光譜信息的干擾; 在特征波長選擇方面, 使用CatBoost特征選擇方法, 通過計算波長的特征重要性選擇特征波長, 降低了冗余信息對于分類結(jié)果的影響, 加快了模型的訓(xùn)練速度, 特征波長建模效果優(yōu)于PCA、CARS和GBDT選擇的特征波長; 最重要的是使用BP-Adaboost集成學(xué)習(xí)模型, 結(jié)合BPNN與AdaBoost方法, 對多個弱分類器的結(jié)果進行集成, 提高了模型的分類正確率, 成功地識別出4組不同農(nóng)藥殘留的高粱樣品和一組無農(nóng)藥殘留的高粱樣品, 其中B和Q的分類正確率均為99.80%, 與XGBoost、LGBM、SVM模型相比分別高出了12.66%、13.47%、13.3%, 充分體現(xiàn)出集成學(xué)習(xí)模型的優(yōu)勢。綜上所述, 本研究提出了一種新高粱農(nóng)藥殘留識別方法, 融合高光譜成像技術(shù)、CatBoost特征選擇方法和BP-Adaboost集成學(xué)習(xí)模型, 成功的實現(xiàn)了高粱農(nóng)藥殘留的快速、無損識別, 模型訓(xùn)練集平均分類正確率為95.68%, 模型測試集平均分類正確率為95.17%, 為農(nóng)產(chǎn)品中的農(nóng)藥殘留種類提供了一種高效、準(zhǔn)確的分類解決方案。
表3 特征波長建模結(jié)果
模型 |
類別 |
訓(xùn)練集正確率/% |
訓(xùn)練集平均正確率/% |
測試集正確率/% |
測試集平均正確率 |
時間/s |
BP-Adaboost |
B |
99.55 |
95.68 |
99.80 |
95.17 |
124.79 |
L |
86.13 |
85.11 |
||||
M |
95.74 |
94.76 |
||||
Q |
99.95 |
99.80 |
||||
Y |
96.86 |
96.24 |
||||
XGBoost |
B |
100.00 |
100.00 |
96.39 |
82.51 |
45.49 |
L |
100.00 |
77.47 |
||||
M |
100.00 |
73.91 |
||||
Q |
100.00 |
99.62 |
||||
Y |
100.00 |
63.07 |
||||
LGBM |
B |
100.00 |
99.55 |
97.41 |
81.70 |
47.82 |
L |
98.62 |
73.68 |
||||
M |
99.59 |
76.16 |
||||
Q |
100.00 |
99.17 |
||||
Y |
99.54 |
63.16 |
||||
SVM |
B |
97.84 |
82.40 |
97.71 |
81.87 |
47.82 |
L |
71.55 |
70.40 |
||||
M |
78.12 |
74.58 |
||||
Q |
99.44 |
99.61 |
||||
Y |
64.44 |
67.00 |
參考文獻:
張嘉洪,何林,胡新軍等. 基于高光譜成像技術(shù)的高粱農(nóng)藥殘留種類檢測研究 [J]. 食品安全質(zhì)量檢測學(xué)報, 2023, 14 (20): 209-217. DOI:10.19812/j.cnki.jfsq11-5956/ts.2023.20.016
地址:無錫市梁溪區(qū)南湖大道飛宏路58-1-108
電話:13810664973
郵箱:info@dualix.com.cn
地址:北京市海淀區(qū)中關(guān)村大街19號
電話:13810664973
郵箱:info@dualix.com.cn
地址:陜西省西安市高新區(qū)科技一路40號盛方科技園B座三層?xùn)|區(qū)
電話:13810664973
郵箱:info@dualix.com.cn
地址:成都市青羊區(qū)順城大街206號四川國際大廈七樓G座
電話:13810664973
郵箱:info@dualix.com.cn